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Per the original proposal, the core of this project was devoted to distributed compression of 
multimodel (vector) sources and distributed compression for hypothesis testing. 

In the final months of the project, we cracked the problem of determining the rate region of the 
vector Gaussian "one-helper" source coding problem. This problem was one of the most 
fundamental open problems in information theory, and had withstood repeated attacks by 
several groups around the world, starting with Liu and Viswanath (2007). The problem is similar 
to that of determining the capacity region of the Gaussian MI MO broadcast channel, whose 
solution won two awards from the IEEE Information Theory Society, but the compression version 
of the problem turned out to be significantly harder. Our proof technique used the method 
introduced to solve that problem but also used a fundamentally new technique that we call 
"distortion projection," which essentially involves projecting the problem into a lower- 
dimensional space where it is easier to analyze. Our results imply that a very simple 
compression algorithm is optimal for this problem. The PI considers this result to be the best 
result to come out of his group in the last 5 years, among all projects. 

We also showed that for the discrete memoryless version of this problem, we have shown that the 
existing state-of-the-art compression scheme is suboptimal. This also resolved an open 
problem in the literature, this one being a 30-year-old open problem in network 
information theory. To show this, we introduced a new compression scheme based on isolating 
common components that performs strictly better than existing schemes. We also showed that 
this new scheme is optimal in certain cases. 

Distributed compression for hypothesis testing is a fundamental—and extremely challenging— 
problem that arises in many application areas including traffic analysis in networks, radar 
systems, wireless relays, and sensor networks. Yet despite the fundamental nature of this 
problem, relatively little was known about it. In particular, it was not known how to optimally 
compress data when the goal is not to reproduce it at the destination but instead to make an 
inference. It was not even known if binning, a commonly-used primitive in distributed 
compression, should be used in this scenario: while binning leads to increased compression ratios, 
in some cases its failure rate dominates the overall system performance. We showed that binning- 
based compression schemes are actually optimal for a class of distributed inference problems. 
This shows that, from a compression standpoint, binning is effective for inference even though, 
somewhat paradoxically, its errors may dominate system performance. We then used this result to 
show exhibit a compression scheme that is nearly optimal for a much wider class of problems. 
This result has drawn renewed attention to an important but neglected area, and other 
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researchers are examining how our techniques can be applied in application-specific areas such as 
wireless relaying. 

During the early stages of the project, we leveraged the connection between Gaussian and discrete 
erasure problems to develop a much better understanding of erasure compression problems. We 
answered the following question: suppose that any k out of n packets are enough to recover the 
source, how much of the source can we recover with 1, 2, ... , k - 1 packets? That is, how many 
bits can I decode as a function of the number of bits I have received? Existing schemes exhibit 
a "cliff effect: one cannot decode any of the source until one can decode all of it. We developed 
simple schemes that allow one to decode more of the source the more packets one receives. 
Moreover, these simple scheme is provably optimal. These results required inventing new analysis 
techniques that are suited to erasure problems. 

We also initiated work in studying coding schemes for secure free-space quantum-optical and 
timing-based communication. Existing studies of information-theoretic security in wireless 
systems focuses mainly in RF-based systems. Accurate channel state information (CSI) is difficult 
to obtain for these systems, however, due to small-scale fading, and existing results have very 
strigent CSI requirements. Free-space optical communication is less prone to small-scale fading, 
which makes it much more amenable to information-theoretic security guarantees. We have 
characterized the secrecy capacity of the Poisson channel model of free-space optical channels and 
gave an explicit characterization of codes that achieves this capacity. The converse proving 
technique is novel and can be applied to other large-bandwidth channels. We also determined the 
capacity of the single-server, memoryless queue as a model for impulse-radio systems. This settled 
an open problem in the information theory literature and had several interesting implications. We 
showed that slow memoryless queues are stochastically degraded with respect to faster ones, 
which implies in particular that slow queues are more entropy increasing than faster ones. This 
strengthened a result of Prabhakar and Gallager (2003) that said that memoryless queues are 
entropy increasing. 

Existing analyses of the performance limits of channel codes are based on large-deviations or 
central limit theorem asymptotics. We have shown that the moderation deviations asymptotic that 
has been introduced in probability theory has much more engineering relevance in the channel 
coding context, and we exactly determined the best possible moderate-deviations performance of 
codes. We also derived new sharper bounds in the large-deviations regime. These essentially 
determine the order of the pre-factor of the error exponent at rates close to capacity. These 
bounds significantly improve upon the state of the art bounds, which were due to Shannon, 
Gallager, and Berlekamp in 1967. 

We have also designed codes for peer-to-peer networks subject to "pollution" attacks, i.e., subject 
to the possibility that adversaries can maliciously inject arbitrary packets into the network. We 
found optimal codes for this problem for Gaussian sources subject to MSE distortion, binary 
sources subject to Hamming distortion, and binary sources subject to erasure distortion. For 
erasure distortion, we found that separate source and channel coding is not optimal: the optimum 
strategy is to mix the two. While there exist instances for which separation is known to be 
suboptimal, the reason that separation fails here seems to be fundamentally different from these 
standard examples. 
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